

AUTODECLARACIÓN AMBIENTAL DE PRODUCTO

de acuerdo a los requisitos EN 15804:2012+A2:2019 y UNE-EN ISO 14021:2016.

Emitida por: Heidelberg Materials Hispania Cementos

Deborah Cruz

Directora de Asistencia Técnica

Asier Ochoa de Eribe Director de Sostenibilidad

Fecha de primera emisión: 2022-12-01 Fecha de modificación: 2023-05-08 Fecha de expiración: 2028-05-08 **CEM II/C-M (V-L) 32,5 R**

Fábrica de Añorga

Heidelberg Materials

Tabla de contenido

1.	INTRODUCCION	3
1.1	¿Qué es eco.build?	4
2.	TÉRMINOS Y DEFINICIONES	5
3.	INFORMACIÓN GENERAL	6
3.1	Identificación y descripción de la organización	6
3.2	Identificación y descripción de producto.	7
3.2	.1 Descripción según UNE-EN 197-1	7
3.2	.2 Composición	7
3.2	.3 Prestaciones mecánicas	7
3.2	.4 Uso	8
3.2	5 Unidad funcional	8
3.3	Alcance	8
3.4	Consideraciones generales	8
3.5	Comparabilidad	8
4.	INFORMACIÓN TÉCNICA	9
4.1	Metodología utilizada para el cálculo ACV	9
4.1	1 Herramienta de cálculo	9
4.1	2 Módulos de información	9
4.2	Fuente y calidad de los datos	10
4.3	Límites del sistema	10
4.4	Diagrama y descripción del flujo del proceso de fabricación	10
4.5	Resultados del ACV	11
4.6	Marcas ambientales voluntarias	12
_	DEFEDENCIA S DIDLI IOCDÁFICA S	42

1. INTRODUCCIÓN

El mundo necesita profundos cambios basados en la sostenibilidad y desde Heidelberg Materials estamos preparados para contribuir con nuestra experiencia y nuestro buen hacer en avanzar hacia ese futuro más sostenible. "Pensar y actuar a largo plazo" es uno de los pilares de nuestro propósito "Material to build our future", constituyéndose como uno de los motores de esta necesaria transformación.

Queremos minimizar nuestro impacto medioambiental siendo líderes en convertir nuestra industria en una actividad neutra en carbono a través de una gestión eficiente de los recursos naturales, agua y suelo.

Los Compromisos de Sostenibilidad 2030 son las piedras angulares de la estrategia de sostenibilidad de nuestra matriz Heidelberg Materials. Se introdujeron en 2017 y se revisaron en 2020 y 2022 para hacerlos más ambiciosos conforme a los desarrollos tecnológicos y la evolución de las necesidades ambientales y sociales. Los Compromisos de Sostenibilidad 2030 ahora incluyen varios objetivos nuevos o actualizados y una gama aún más amplia de responsabilidades en la gestión de la sostenibilidad corporativa.

Nuestro compromiso abarca seis áreas clave de sostenibilidad, que son de especial importancia:

Este informe contiene los parámetros medioambientales declarados en la producción del cemento CEM II/C-M (V-L) 32,5 R fabricado por Heidelberg Materials en su planta de Añorga con un clínker cuya producción contribuye sustancialmente a la mitigación del cambio climático, conforme al Reglamento Delegado (UE) 2021/2139 sobre la Taxonomía Climática (422/191 DOUE 9.12.2021). Las emisiones de gases de efecto invernadero verificadas durante 2022 para la obtención de cada tonelada de clínker ascendieron a 785,40 kg de CO₂ equivalente.

Como resultado de este detallado análisis, la huella de carbono asociada a la fabricación de cada tonelada del CEM II/C-M (V-L) 32,5 R es un 41% inferior a la verificada por CEMBUREAU para la producción del cemento tipo I por la industria del cemento en Europa, con un contenido total del 27,58%de material reciclado según la UNE-EN ISO 14021:2017, cumpliendo los criterios definidos por Heidelberg Materials para la clase **SILVER** en la gama **eco.build** de los productos más sostenibles del mercado.

1.1 ¿Qué es eco.build?

eco.build es la gama de cementos y hormigones sostenibles que ofrece al mercado Heidelberg Materials.

Se trata de soluciones constructivas capaces de responder a la creciente demanda del mercado de productos de calidad con un impacto ambiental reducido, que permiten el desarrollo de la actividad constructiva a largo plazo y garantizan la creación sostenible de ciudades y entornos ambientalmente seguros para el planeta.

eco.build se basa en tres aspectos principales que garantizan un excelente comportamiento ambiental de nuestra gama de cementos:

- Reducción de la huella de carbono: la gama eco.build incluye productos con bajas emisiones de CO₂ que pueden alcanzar más de un 40% de reducción con respecto a similares productos convencionales.
- Contribución a la economía circular: la gama **eco.build** incluye productos que pueden llegar a incorporar más de un 40% de material reciclado.
- Producto local: los productos que componen la gama **eco.build** priorizan el uso de materias primas locales y su comercialización en el mercado kilómetro 0.

eco.build se adapta a los requerimientos de cada proyecto. Mediante sus tres niveles: **PLATINUM**, **GOLD** y **SILVER**, permite elevar los estándares de sostenibilidad de todo tipo de obras de edificación e ingeniería civil, al ofrecer diferentes alternativas de reducción de emisiones CO₂ e incorporación de materiales reciclados.

La gama de cementos **eco.build**, producida y comercializada por Heidelberg Materials, se compone de:

- eco.build PLATINUM: cementos de muy bajo contenido en carbono, elaborados con materiales de impacto ambiental reducido, que contribuyen sustancialmente a la mitigación del cambio climático, garantizando un 40% menos de emisiones de CO₂* respecto a otro cemento convencional, y benefician muy significativamente a la economía circular, al incorporar un mínimo de un 40% de material reciclado.
- **eco.build GOLD**: cementos de muy bajo contenido en carbono, elaborados con materiales de impacto ambiental reducido, que permiten la mitigación del cambio climático, garantizando un 30% menos de emisiones de CO₂* respecto a otro cemento

convencional, y/o benefician significativamente a la economía circular, al incorporar un mínimo de un 30% de material reciclado.

• eco.build SILVER: cementos de bajo contenido en carbono, que garantizan un 20% menos de emisiones de CO₂* respecto a otro cemento convencional, y/o incorporan un mínimo de un 20% de material reciclado, contribuyendo a la economía circular.

*Valor indicativo calculado respecto al CEM I reportado por la DAP sectorial de Cembureau 2020.

2. TÉRMINOS Y DEFINICIONES

Para los fines de este documento, se aplican los términos y definiciones indicados:

Potencial de calentamiento global

Conocido como Global Warming Potencial (GWP), es el indicador de impacto medioambiental más importante para cuantificar la huella de carbono de un producto.

• Huella de carbono de un producto

Suma neta de las emisiones y capturas de gases de efecto invernadero (GEI) en un sistema, expresadas como CO₂ equivalente y basadas en un análisis del ciclo de vida utilizando la categoría impacto única de cambio climático.

Autodeclaración medioambiental

Declaración ambiental efectuada por el fabricante sin certificación de una tercera parte.

Impacto medioambiental

Cambio en el medio ambiente, adverso o beneficioso, resultante de las actividades o productos de una empresa.

Unidad funcional

Cuantificación que se utiliza como unidad de referencia en un estudio del ACV (análisis del ciclo de vida).

Gases de efecto invernadero (GEI)

Componentes gaseosos de la atmosfera, tanto naturales como antropogénicos, que absorben y emiten radiación a longitudes de onda específicas dentro del espectro de radiación infrarroja. Los GEI incluyen, entre otros, dióxido de carbono (CO₂), metano (CH₄), óxido nitroso (N₂O), hidrofluorocarbonos (HFC), perfluorocarbonos (PFC) y hexafluoruro de azufre (SF₆).

Análisis del ciclo de vida (ACV)

Estudio del impacto medioambiental de las etapas consecutivas e interrelacionadas del sistema de producto, desde la extracción de las materias primas o generación de recursos naturales hasta su eliminación.

3. INFORMACIÓN GENERAL

3.1 Identificación y descripción de la organización

Heidelberg Materials es uno de los líderes mundiales en la producción de cemento, hormigón, áridos y productos innovadores para la construcción y Heidelberg Materials Hispania es su filial en España. Más de 250 profesionales trabajan en la producción, comercialización de soluciones constructivas y en el desarrollo de nuevos productos basados en altos estándares de eficiencia, versatilidad y respeto por el medio ambiente.

Heidelberg Materials cuenta con 2 fábricas de cemento ubicadas en Añorga (San Sebastián-Gipuzkoa) y Arrigorriaga (Bizkaia).

Sostenibilidad

Heidelberg Materials mantiene un firme compromiso con la sostenibilidad económica, social y medioambiental -los tres ejes del desarrollo sostenible- que le permite conjugar innovación en soluciones constructivas, protección del medio ambiente e integración en el entorno.

A este compromiso se unen los puntos clave y los principios fundamentales de la Estrategia de Sostenibilidad de Heidelberg Materials, recogidos en los Compromisos de Sostenibilidad 2030 del Grupo.

Heidelberg Materials forma parte de la Asociación Global del Cemento y el Hormigón (GCCA) y del Pacto Mundial de Naciones Unidas (UN Global Compact), además de colaborar a nivel internacional con el grupo para la conservación del medio natural BirdLife.

En el ámbito nacional, Heidelberg Materials participa en diversas iniciativas empresariales de referencia en materia de cambio climático, como la plataforma Clúster Cambio Climático de Forética y la comunidad #PorElClima.

Calidad

Heidelberg Materials apuesta por la Certificación de procesos, instalaciones y productos como garantía de calidad y control para sus grupos de interés y respeto por el medio ambiente. La fábrica de Añorga dispone del certificado de sistema integrado de gestión según los estándares ISO 9001:2015 "Sistemas de Gestión de Calidad", ISO 14001:2015 "Sistemas de Gestión Ambiental", ISO 50001 "Certificación del sistema de gestión energética" y Marca AENOR N de cementos que certifica la conformidad con los requisitos aplicables a cementos, facilitando demostrar la conformidad con la Instrucción para la Recepción de Cementos (RC- 16) y los artículos aplicables del Código Estructural.

El Inventario de Gases de Efecto Invernadero de Heidelberg Materials es verificado cada año según los requisitos de la norma ISO 14064-1:2012 "Gases de Efecto Invernadero".

3.2 Identificación y descripción de producto.

3.2.1 Descripción según UNE-EN 197-1.

El sistema analizado en esta autodeclaración hace referencia al ciclo de vida del cemento **CEM II/C-M (V-L) 32,5 R** producido por Heidelberg Materials en su fábrica de Añorga.

3.2.2 Composición

El **CEM II/C-M (V-L) 32,5 R** es un cemento portland compuesto, de altas resistencias mecánicasfinales y resistencia inicial alta, según la norma UNE-EN 197-1.

Componente	CEM II/B-M (V-L) 42,5 R					
	Peso (%)	Contenido de material reciclado (%)*				
		Preconsumo	Postconsumo			
Clínker (K)	57		1,60			
Ceniza (V)	23	25,98				
Caliza (L)	20					
TOTAL	100	27,58				

^{*} Según el reglamento particular de la marca AENOR N Sostenible para cementos.

Ninguno de los componentes es alguna sustancia peligrosa incluida en la lista "Candidate List of Substances of Very High Concern (SVHC) for authorization" en un porcentaje superior al 0,1% del peso total del producto.

3.2.3 Prestaciones mecánicas

Especificaciones según UNE-EN 197-1:2011 y a los resultados de autocontrol de producto a abril de 2023:

Características físicas y mecánicas						
Resistencia a co	ompresión (MPa)	Inicia da francia da (mis)				
a 2 días	a 28 días	Inicio de fraguado (min)				
≥ 13,5	32,5 <r>52,5</r>	≥ 90				
17,8	41,8	209				

3.2.4 Uso

Este cemento **CEM II/C-M (V-L) 32,5 R** puede emplearse para usos no estructurales. Especialmente recomendado para las siguientes aplicaciones:

- ✓ Obras de hormigón en masa no estructural, incluso en grandes volúmenes, que requieran un bajo calor de hidratación para consequir poca retracción.
- ✓ Mejora y estabilización de suelos, fabricación de suelo-cemento y grava-cemento
- ✓ Morteros de albañilería y pavimentos.

3.2.5 Unidad funcional

La unidad funcional utilizada para los cálculos es 1 tn = 1000 kg de producto a granel. Los impactos y consumos de recursos, tanto directos como indirectos, se han calculado respecto a esta unidad.

3.3 Alcance

La presente autodeclaración es "de cuna a puerta", por tanto incluye las etapas de producto (A1-A3), de acuerdo al esquema modular definido en la Norma UNE-EN 15804:2012+A2:2019.

3.4 Consideraciones generales

Esta autodeclaración ambiental de producto es un documento que recoge los resultados del análisis de ciclo de vida (ACV), realizado conforme a una norma, en este caso en la norma europea UNE-EN 15804:2012+A2:2019, que establece unas reglas de categoría de producto (RCP) comunes para el sector de la construcción. De esta forma, se proporciona un perfil ambiental basado en datos cuantificados y verificables, empleando una serie de categorías de impacto normalizadas (indicadores de impacto ambiental, indicadores de consumo de recursos, desechos y flujos de salida).

3.5 Comparabilidad

Es necesario explicar que autodeclaraciones dentro de la misma categoría de producto, pero que utilicen diferentes herramientas para el cálculo ACV, pueden no ser comparables.

Las autodeclaraciones de productos de construcción pueden no ser comparables si no cumplen con la norma EN 15804. La comparabilidad depende además de las reglas específicas de la categoría de productos, los límites y asignaciones del sistema y las fuentes de datos de fondo.

4. INFORMACIÓN TÉCNICA

4.1 Metodología utilizada para el cálculo ACV

Esta autodeclaración ambiental tipo II y el análisis de ciclo de vida (ACV) han sido desarrolladas según las normas internacionales, ISO 14021:2017, ISO 14040 e ISO 14044 y las Reglas de Categoría de Producto PCR 2019:14 Construction products (EN 15804:A2); Version 1.11; 2021-02-05 y c-PCR-001 Cement and Building Lime (EN 16908:2017) 2019-12-20.

Los datos utilizados para el ACV han sido los medidos entre enero y diciembre de 2021. Están incluidos los datos relativos a transporte y componentes de los materiales utilizados, considerando cargas reales y distancias recorridas. Las operaciones en el puerto se han excluido. Heidelberg Materials controla y dirige los procesos dentro de la fábrica desde la extracción de materias primas de la cantera. Los únicos procesos que no están controlados directamente por la empresa son la producción de combustible, el transporte de materias primas minoritarias y entradas menores excluidas según las reglas de corte.

4.1.1 Herramienta de cálculo

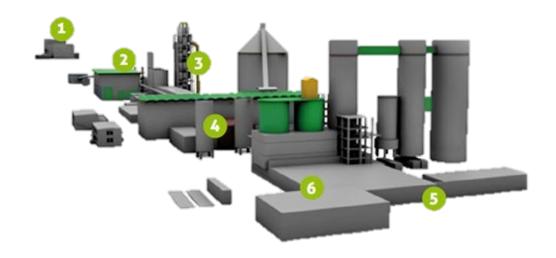
Para el cálculo del ACV se ha utilizado el software GCCA's Industry EPD Tool for Cement and Concrete (V3.2), International version. Esta herramienta esta desarrollada para la Global Cement and Concrete Association, por Quantis https://quantis-intl.com/ y verificada por Studio Fieschi https://www.studiofieschi.it/n.

La herramienta no incluye el ingreso o cálculo del contenido de carbono biogénico del producto o embalajes.

4.1.2 Módulos de información

INFORMACIÓN DEL CICLO DE VIDA DEL EDIFICIO														
	A1 - A3		A4 - A5		B1 - B7			C1 - C4			D			
ETAPA DE PRODUCTO			ETAPA PROCESO		ETAPA DE USO			ETAPA DE FIN DE VIDA			BENEFICIOS Y CARGAS MÁS ALLÁ DEL			
A1	A2	A 3	A4 escenario	A5 escenario	B1 escenario	B2 escenario	BB escenario	B4 escenario	B5 escenario	C1 escenario	© escenario	(B escenario	C4 escenario	LÍMITE DEL
materias				Proceso de construcción / instalación	Uso		Reparación	Sustitución		/ u.		Tratamiento de residuos		
Suministro de materias	Transporte	Fabricación	Transporte	oceso de con instalación	B6 se escenar	rvicio	so de e	nergía e	en	Deconstrucción / demolición	Transporte	miento d	Eliminación	
Sumi	Trans	Fabri	Trans	Proce ins	B7 servi		Uso de	agua e	n	Deco	Trans	Trata	Elimi	

4.2 Fuente y calidad de los datos


Es importante resaltar que los datos utilizados corresponden a las mediciones que se realizan directamente por la fábrica. De acuerdo con las normas vigentes, en Heidelberg Materials se planifican campañas de medición periódicas. Los datos de emisión del proceso de fabricación del clínker están incluidos en este estudio de ACV. Se utilizan los datos de emisión del horno medidos directamente en fábrica. El ruido, el impacto en el paisaje, la vibración, etc. no están dentro del alcance de este estudio. En caso de que los datos de emisión del horno específico no estén disponibles, se utilizan los valores por defecto que incorpora la herramienta de cálculo.

Siguiendo los criterios de calidad de datos de las reglas de categoría de producto de la huella ambiental, y considerando que los datos utilizados para los procesos son representativos del ámbito geográfico declarado, que no hubo necesidad de modificar aspectos técnicos de forma significativa y que los datos corresponden al último año completo, y considerando que las emisiones directas de la planta de producción están certificadas por una tercera parte e incluidas en el Registro Nacional de Emisiones y Fuentes Contaminantes de España (PRTR) y específicamente las emisiones de GEI están incluidas en el Régimen de comercio de derechos de emisión de la UE (RCDE UE), la calidad de datos se considera alta.

4.3 Límites del sistema

El ACV tiene un alcance "de la cuna a la puerta", siendo el final del ciclo de vida la báscula de salida de la fábrica de Añorga, incluyendo los módulos A1 a A3. Esta autodeclaración incluye todas las etapas de producto "de cuna a puerta" (módulos A1-A3), y el producto cumplecon las condiciones requeridas en la EN 15804:2012+A2:2019 relativas a la exclusión de módulos B1 a D (el producto se integra físicamente en otro producto durante la instalación de forma que no puede ser separado físicamente en el fin de vida, y el producto ya no es identificable en el fin de vida como resultado de un proceso de transformación físico o químico).

4.4 Diagrama y descripción del flujo del proceso de fabricación.

4.5 Resultados del ACV.

Impacto Ambiental de acuerdo EN 15804+A2

Core environmental impact indicators

Indicator		A1-A3	Unit
Global Warming Potential, GHG	GWP-GHG	4.75E2 **	kg CO₂ eq.
Global Warming Potential, total	GWP-tot	4.75E2 *	kg CO₂ eq.
Global Warming Potential, fossil fuels	GWP-fos	4.75E2	kg CO₂ eq.
Global Warming Potential, biogenic	GWP-bio	7.94E-2	kg CO₂ eq.
Global Warming Potential, land use and land use change)	GWP-luc	3.37E-2	kg CO₂ eq.
Depletion potential of the stratospheric ozone layer	ODP	1.38E-5	kg CFC 11 eq.
Acidification potential, Accumulated Exceedance	AP	7.95E-1	mol H+ eq.
Eutrophication potential, fraction of nutrients reaching marine end	EP-fw	1.09E-3	kg P eq.
Eutrophication potential, fraction of nutrients reaching marine end	EP-mar	1.16E-3	kg N eq.
Eutrophication potential, Accumulated Exceedance	EP-ter	3.09E0	mol N eq.
Formation potential of tropospheric ozone	POCP	8.38E-1	kg NMVOC eq.
Abiotic depletion potential for non-fossil resources	ADPE	1.63E-4	kg Sb eq.
Abiotic depletion potential for fossil resources potential	ADPF	2.54E3	MJ, net calorific value
Water (user) deprivation potential, deprivation-weighted water	WDP	1.64E1	m³ world eq. deprived

^{*} The indicated values (gross values) include the greenhouse gas emissions from the incineration of secondary fuels at clinker production. The net GWP-tot (excluding the emissions from the incineration of secondary fuels at clinker production) is 4.24E2 kg CO2–eq. The net GWP-bio is 2.24E-2 kg CO2-eq.

It should be noted that the net/gross differentiation applies to GWP indicators only and is ignored for other indicators where gross is applied by default.

^{**} The indicated values (gross values) include the greenhouse gas emissions from the incineration of secondary fuels at clinker production. The net GWP-GHG (excluding the emissions from the incineration of secondary fuels at clinker production) is 4.24E2 kg CO2-eq.

Indicadores del consumo de recursos de acuerdo EN 15804+A2

Parameters describing resource use

Indicator		A1-A3	Unit
Use of renewable primary energy excluding renewable primary	PERE	1.24E2	MJ, net calorific value
energy resources used as raw materials	PERE	1.2462	M3, Het Calonne value
Use of renewable primary energy resources used as raw materials	PERM	0,00E+00	MJ, net calorific value
Total use of renewable primary energy resources	PERT	1.24E2	MJ, net calorific value
Use of non-renewable primary energy excluding non-renewable	PENRE	2,54E+03	MJ, net calorific value
primary energy resources used as raw materials	PENKE	2,546705	M3, Het Calonne value
Use of non-renewable primary energy resources used as raw	PENRM	0,00E+00	MJ, net calorific value
materials	LEMKI	0,002100	Mo, het calorine value
Total use of non-renewable primary energy resources	PENRT	2.54E3	MJ, net calorific value
Use of secondary materials	SM	3.04E2	kg
Use of renewable secondary fuels	RSF	2.36E2	MJ, net calorific value
Use of non-renewable secondary fuels	NRSF	5.14E2	MJ, net calorific value
Net use of fresh water	NFW	4.48E-1	m³

4.6 Marcas ambientales voluntarias.

Desde el año 1996 la fábrica de Añorga mantiene un Sistema de Gestión de Calidadverificado por AENOR de acuerdo a la norma UNE-EN ISO 9001:2015. ER-0613/1996.

Desde el año 2000 la fábrica de Añorga mantiene un Sistema de Gestión Medioambiental verificado por AENOR de acuerdo a la norma UNE-EN ISO 14001:2015. GA-2000/0247.

5. REFERENCIAS BIBLIOGRÁFICAS

- UNE-EN 15804:2012+A1:2014 Sostenibilidad en la construcción. Declaraciones ambientales de producto.
- PCR 2019:14 Construction products (EN 15804:2012+A2 2019)
- c-PCR-001 Cement and Building Lime (EN 16908:2017)
- UNE-EN ISO 14025:2010 Etiquetas y declaraciones ambientales.
- UNE-EN ISO 14021:2017 Etiquetas y declaraciones ambientales. Afirmaciones ambientales autodeclaradas
- UNE-EN ISO 14040:2006 Gestión ambiental. Análisis del ciclo de vida. Principios y marco de referencia.
- UNE-EN ISO 14044:2006/A1:2018 Gestión ambiental. Evaluación del ciclo de vida. Requisitos y directrices. Modificación 1. (ISO 14044:2006/Amd 1:2017).
- UNE EN 197-1:2011. Cemento. Parte 1: Composición, especificaciones y criterios de conformidad de los cementos comunes.
- UNE-EN 197-2:2020. Cemento. Parte 2: Evaluación y verificación de la constancia de prestaciones.
- Reglamento particular de la marca AENOR N Sostenible para cementos. RP 015.01.
- Informe de sostenibilidad 2021. Heidelberg Materials. https://www.heidelbergmaterials.com/en/sustainability-report
- https://www.cementosrezola.es